Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 922
Filtrar
1.
J Med Chem ; 67(5): 3778-3794, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482826

RESUMO

It is an urgent need to tackle the global crisis of multidrug-resistant bacterial infections. We report here an innovative strategy for large-scale screening of new antibacterial agents using a whole bacteria-based DNA-encoded library (DEL) of vancomycin derivatives via peripheral modifications. A bacterial binding affinity assay was established to select the modification fragments in high-affinity compounds. The optimal resynthesized derivatives demonstrated excellently enhanced activity against various resistant bacterial strains and provided useful structures for vancomycin derivatization. This work presents the new concept in a natural product-templated DEL and in antibiotic discovery through bacterial affinity screening, which promotes the fight against drug-resistant bacteria.


Assuntos
Antibacterianos , Vancomicina , Vancomicina/farmacologia , Vancomicina/química , Antibacterianos/química , Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , DNA , Testes de Sensibilidade Microbiana
2.
Anal Chim Acta ; 1294: 342309, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336411

RESUMO

BACKGROUND: Glycopeptide antibiotics (GPAs) represented by vancomycin (VAN) are clinically used as a first-line treatment for serious infections caused by Gram-positive pathogens. The use and dosing methods of GPAs are rigorously managed for safety considerations, which calls for fast and accurate quantification approaches. RESULT: A new sort of fluorescent probes for GPAs has been proposed, each of which was integrated by a fluorescein-based reporter and a GPAs' recognition peptide D-alanyl-D-alanine (D-Ala-D-Ala). These probes work as dynamic molecular switches, which mainly exist as non-fluorescent spirolactam forms in the absence of GPAs. GPAs binding with the dipeptide regulates the dynamic balance between fluorescence OFF lactam form and fluorescence ON ring-opened form, rendering these probes capable of GPAs detecting. The most promising one P1 exhibits excellent sensitivity and selectivity towards GPAs detection. SIGNIFICANCE: Different to previous developments, P1 consists of a single fluorophore without the need of a fluorescence-quenching group or a secondary dye, which is the smallest fluorescent probe for GPAs up to now. P1 realizes direct VAN quantification from complex biological samples including real serums, dispensing with additional drug extraction. More interestingly, both P1 and P6 can distinguish GPAs with different peptide backbones, which has not been achieved previously.


Assuntos
Antibacterianos , Glicopeptídeos , Fluorescência , Antibacterianos/química , Glicopeptídeos/química , Vancomicina/química , Alanina
3.
J Chromatogr A ; 1715: 464611, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181629

RESUMO

Hydroxy acids (HAs) are ubiquitous in nature and play significant roles in various industrial and biological processes. Most HAs harbor at least one chiral center, therefore the development of efficient chiral analysis techniques for HA stereoisomers is of crucial importance across a wide range of fields. A capillary electrophoresis (CE) method was developed for the chiral analysis and quantification of aliphatic and aromatic α­hydroxy acid (AHA) enantiomers, aliphatic ß­hydroxy acid (BHA) enantiomers and aliphatic polyhydroxy acid (PHA) stereoisomers. Using a modified partial filling-counter current method with indirect UV detection, high resolution (Rs) was achieved with vancomycin as a chiral selector added to the background electrolyte composed of 10 mM of benzoic acid/L-histidine at pH 5 using a polyacrylamide-coated capillary. This method could be readily applied to the determination of the enantiomers of 12 aliphatic AHAs, 4 aromatic AHAs, 3 aliphatic BHAs, as well as to the determination of the stereoisomers of tartaric acid, 2,3-dihydroxybutanoic acid, 2,3,4,5-tetrahydroxypentanoic acid, and 2,3,4,5,6-pentahydroxyhexanoic acid without the need for sample derivatization. Finally, our study provides a robust and versatile strategy for the chiral and stereoselective analysis of a broad range of hydroxy acid compounds.


Assuntos
Hidroxiácidos , Vancomicina , Vancomicina/química , Eletroforese Capilar/métodos , Estereoisomerismo
4.
J Am Chem Soc ; 145(38): 21002-21011, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721386

RESUMO

The biosynthesis of glycopeptide antibiotics such as vancomycin and other biologically active biaryl-bridged and diaryl ether-linked macrocyclic peptides includes key enzymatic oxidative phenol macrocyclization(s) of linear precursors. However, a simple and step-economical biomimetic version of this transformation remains underdeveloped. Here, we report highly efficient conditions for preparing biaryl-bridged and diaryl ether-linked macrocyclic peptides based on multicopper(II) clusters. The selective syntheses of ring models of vancomycin and the arylomycin cyclic core illustrate the potential of this technology to facilitate the assembly of complex antibiotic macrocyclic peptides, whose syntheses are considered highly challenging. The unprecedented ability of multicopper(II) clusters to chelate tethered diphenols and promote intramolecular over intermolecular coupling reactions demonstrates that copper clusters can catalyze redox transformations that cannot be accessed by smaller metal catalysts.


Assuntos
Fenol , Vancomicina , Vancomicina/química , Peptídeos/química , Fenóis , Oxirredução , Éteres , Etil-Éteres , Estresse Oxidativo , Peptídeos Cíclicos/química
5.
ACS Appl Mater Interfaces ; 15(31): 37174-37183, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525332

RESUMO

Periprosthetic infections are one of the most serious complications in orthopedic surgeries, and those caused by Staphylococcus aureus (S. aureus) are particularly hard to treat due to their tendency to form biofilms on implants and their notorious ability to invade the surrounding bones. The existing prophylactic local antibiotic deliveries involve excessive drug loading doses that could risk the development of drug resistance strains. Utilizing an oligonucleotide linker sensitive to micrococcal nuclease (MN) cleavage, we previously developed an implant coating capable of releasing covalently tethered vancomycin, triggered by S. aureus-secreted MN, to prevent periprosthetic infections in the mouse intramedullary (IM) canal. To further engineer this exciting platform to meet broader clinical needs, here, we chemically modified the oligonucleotide linker by a combination of 2'-O-methylation and phosphorothioate modification to achieve additional modulation of its stability/sensitivity to MN and the kinetics of MN-triggered on-demand release. We found that when all phosphodiester bonds within the oligonucleotide linker 5'-carboxy-mCmGTTmCmG-3-acrydite, except for the one between TT, were replaced by phosphorothioate, the oligonucleotide (6PS) stability significantly increased and enabled the most sustained release of tethered vancomycin from the coating. By contrast, when only the peripheral phosphodiester bonds at the 5'- and 3'-ends were replaced by phosphorothioate, the resulting oligonucleotide (2PS) linker was cleaved by MN more rapidly than that without any PS modifications (0PS). Using a rat femoral canal periprosthetic infection model where 1000 CFU S. aureus was inoculated at the time of IM pin insertion, we showed that the prophylactic implant coating containing either 0PS- or 2PS-modified oligonucleotide linker effectively eradicated the bacteria by enabling the rapid on-demand release of vancomycin. No bacteria were detected from the explanted pins, and no signs of cortical bone changes were detected in these treatment groups throughout the 3 month follow-ups. With an antibiotic tethering dose significantly lower than conventional antibiotic-bearing bone cements, these coatings also exhibited excellent biocompatibility. These chemically modified oligonucleotides could help tailor prophylactic anti-infective coating strategies to meet a range of clinical challenges where the risks for S. aureus prosthetic infections range from transient to long-lasting.


Assuntos
Infecções Estafilocócicas , Vancomicina , Ratos , Camundongos , Animais , Vancomicina/química , Nuclease do Micrococo/farmacologia , Staphylococcus aureus , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle
6.
ACS Chem Biol ; 18(7): 1473-1479, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37405871

RESUMO

The emergence of multidrug-resistant pathogens poses a threat to public health and requires new antimicrobial agents. As the archetypal glycopeptide antibiotic (GPA) used against drug-resistant Gram-positive pathogens, vancomycin provides a promising starting point. Peripheral alterations to the vancomycin scaffold have enabled the development of new GPAs. However, modifying the core remains challenging due to the size and complexity of this compound family. The recent successful chemoenzymatic synthesis of vancomycin suggests that such an approach can be broadly applied. Herein, we describe the expansion of chemoenzymatic strategies to encompass type II GPAs bearing all aromatic amino acids through the production of the aglycone analogue of keratinimicin A, a GPA that is 5-fold more potent than vancomycin against Clostridioides difficile. In the course of these studies, we found that the cytochrome P450 enzyme OxyBker boasts both broad substrate tolerance and remarkable selectivity in the formation of the first aryl ether cross-link on the linear peptide precursors. The X-ray crystal structure of OxyBker, determined to 2.8 Å, points to structural features that may contribute to these properties. Our results set the stage for using OxyBker broadly as a biocatalyst toward the chemoenzymatic synthesis of diverse GPA analogues.


Assuntos
Antibacterianos , Vancomicina , Vancomicina/química , Antibacterianos/química , Glicopeptídeos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Peptídeos
7.
J Med Chem ; 66(15): 10226-10237, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37477249

RESUMO

Drug resistant bacterial infections have emerged as one of the greatest threats to public health. The discovery and development of new antimicrobials and anti-infective strategies are urgently needed to address this challenge. Vancomycin is one of the most important antibiotics for the treatment of Gram-positive infections. Here, we introduce the vancomycin-arginine conjugate (V-R) as a highly effective antimicrobial against actively growing mycobacteria and difficult-to-treat mycobacterial biofilm populations. Further improvement in efficacy through combination treatment of V-R to inhibit peptidoglycan synthesis and ethambutol to inhibit arabinogalactan synthesis underscores the ability to identify compound synergies to more effectively target the Achilles heel of the cell-wall assembly. Moreover, we introduce mechanistic activity data and a molecular model derived from a d-Ala-d-Ala-bound vancomycin structure that we hypothesize underlies the molecular basis for the antibacterial improvement attributed to the arginine modification that is specific to peptidoglycan chemistry employed by mycobacteria and distinct from Gram-positive pathogens.


Assuntos
Mycobacterium , Vancomicina , Vancomicina/farmacologia , Vancomicina/química , Peptidoglicano/química , Arginina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
8.
J Med Chem ; 66(15): 10238-10240, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37477251

RESUMO

Vancomycin-like drugs target peptidoglycan (PG) via binding to C-terminal d-Ala-d-Ala dipeptide. An engineered vancomycin has enhanced affinity for the PG stem peptide, due to probable interactions with a third residue, meso-diaminopimelic acid, in the PG. This engineered vancomycin displays enhanced killing of mycobacteria.


Assuntos
Peptidoglicano , Vancomicina , Vancomicina/química , Peptidoglicano/química , Resistência a Vancomicina , Antibacterianos/farmacologia , Antibacterianos/metabolismo
9.
J Med Chem ; 66(13): 9006-9022, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315221

RESUMO

The continued efficacy of glycopeptide antibiotics (GPAs) against Gram-positive bacteria is challenged by the emergence and spread of GPA-resistant pathogens, particularly vancomycin-resistant enterococci (VRE). The growing frequency of GPA resistance propels the need for innovative development of more effective antibiotics. Unlike canonical GPAs like vancomycin, Type V GPAs adopt a distinct mode of action by binding peptidoglycan and blocking the activity of autolysins essential for cell division, rendering them a promising class of antibiotics for further development. In this study, the Type V GPA, rimomycin A, was modified to generate 32 new analogues. Compound 17, derived from rimomycin A through N-terminal acylation and C-terminal amidation, exhibited improved anti-VRE activity and solubility. In a VRE-A neutropenic thigh infection mouse model, compound 17 significantly lowered the bacterial load by 3-4 orders of magnitude. This study sets the stage to develop next-generation GPAs in response to growing VRE infections.


Assuntos
Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Glicopeptídeos/farmacologia , Glicopeptídeos/uso terapêutico , Glicopeptídeos/química , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Testes de Sensibilidade Microbiana , Biologia Sintética , Vancomicina/farmacologia , Vancomicina/química
10.
J Chromatogr A ; 1704: 464120, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315444

RESUMO

Retention and separation of enantiomers of amine derivatives of indane and tetralin (rasagiline and its analogues) on chiral stationary phases (CSPs) Chiral-T and Chiral-V with teicoplanin and vancomycin antibiotics grafted onto superficially porous silica particles under conditions of reversed-phase and polar organic chromatography were studied. The mobile phases (MP) were water-methanol and acetonitrile-methanol solvents modified with triethylamine-acetic acid buffer. The effects of molecular structure and physical properties of the analytes on enantioselective retention are discussed. The retention mechanism is hypothesized to involve the ion-ion attraction between the positively charged amino group of an analyte and the carboxylate anion of either antibiotic. The binding occurs outside of the antibiotic's aglycon basket that accounts for relatively low enantioselectivity observed. The presence of a large substitute at the analyte's amino group complicates enantiorecognition. The effect of the MP solvent composition on retention and enantioseparation was investigated. It is a complex phenomenon combined of different oppositely directed influences that resulted in different shapes, increasing, decreasing, or U-shaped, of the retention factor vs. composition dependences. A model taking into account the interaction of both solvents of a binary MP with both an analyte and an adsorption site was successfully applied to approximate a majority of the studied systems. Pros and cons of the model are discussed.


Assuntos
Teicoplanina , Vancomicina , Vancomicina/química , Teicoplanina/química , Porosidade , Metanol , Antibacterianos/química , Solventes , Estereoisomerismo , Indicadores e Reagentes , Cromatografia Líquida de Alta Pressão/métodos
11.
Pharmacol Rep ; 75(4): 951-961, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37171518

RESUMO

BACKGROUND: Bacterial resistance is defined as a microorganism's capacity to develop mechanisms for resisting a determined antimicrobial. Gram-positive bacteria, such as Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), are internationally recognized among the isolates with this resistance profile. In this context, the demand for new medicines has risen, and silver nanoparticles (AgNPs) have been highlighted, especially for their anti-bacterial effects. To develop a nano-antibiotic for treating these Gram-positive strains, we herein report synthesizing and characterizing a nano-antibiotic based on AgNPs functionalized with the complex vancomycin-cysteamine. METHODS: AgNPs were produced using the bottom-up methodology and functionalized with vancomycin modified by the carbodiimide chemistry, forming Ag@vancomycin. Susceptibility tests were performed using S. aureus and E. faecalis strains to assess the bacteriostatic and bactericidal potential of the developed nano-antibiotic. RESULTS: Fourier transform infrared spectroscopy measurements showed the efficacy of vancomycin chemical modification, and the characteristic bands of AgNPs functionalization with the antibiotic. The increase in the nano-antibiotic average hydrodynamic diameter observed by dynamic light scattering proved the presence of vancomycin at the surface of AgNPs. The data from the minimum inhibitory concentration and minimal bactericidal concentration assays tested on standard and clinical planktonic strains of S. aureus and E. faecalis presented excellent performance. CONCLUSION: The results indicate the promising development of a new nano-antibiotic in which the functionalization potentiates the bacteriostatic action of AgNPs and vancomycin with greater efficacy against Gram-positive strains.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Vancomicina/farmacologia , Vancomicina/química , Staphylococcus aureus , Enterococcus faecalis , Prata/farmacologia , Cisteamina/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana
12.
Food Chem ; 423: 136242, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196408

RESUMO

Klebsiella pneumoniae (KP) and Acinetobacter baumannii (AB) are two important gram-negative bacteria that cause pneumonia and have been recently known to be associated with food. The rapid detection of these pathogens in food is important to minimize their colonization of the gut and stop new threats of the disease from spreading across the food chain. Herein, a double-edged sword aptasensor was developed for the synchronous detection of KP and AB in food and clinical samples. A highly sensitive, selective, specific, and synchronous detection of the target bacteria was achieved, and the limit of detection (LOD) was 10 cells/mL with a liner range of 50 to 105 cells/mL. The total assay time was 1.5 h. This study does not only provide a new tool for the detection of the target bacteria, but also serves as a promising tool for food safety and pneumonia diagnosis.


Assuntos
Acinetobacter baumannii , Klebsiella pneumoniae , Acinetobacter baumannii/isolamento & purificação , Klebsiella pneumoniae/isolamento & purificação , Bioensaio/métodos , Nanocompostos/química , Vancomicina/química , Oligonucleotídeos/química , Análise Espectral Raman
13.
Biosens Bioelectron ; 230: 115264, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004282

RESUMO

In this work, we constructed a moderate and convenient approach for the determination of staphylococcus aureus (S. aureus) by using organic-inorganic flower-like hybrid nanoflowers and Pig IgG together in an enzyme-linked immunosorbent assay (ELISA) system. To ensure efficient capture, the hybrid nanoflowers were prepared by encapsulating horseradish peroxidase (HRP) and vancomycin (VAN) in the inorganic nanocrystal composites (calcium ion solution), just like the mimic biomineralization process. Owing to the self-assembly technique, the synthesized VAN-HRP-CaHPO4 nanoflowers (NFs) can not only retain the ability to particularly capture the gram-positive bacteria but also enhance the stability and enzymatic activity to achieve the signal output amplification. Then, taking advantage of the integration of signal amplification elements (HRP) and biorecognition unit (VAN), the VAN-HRP-CaHPO4 NFs were utilized as a new kind of capture & signal regent in the procedure of S. aureus detection. Based on this ELISA system, S. aureus could be clearly detected within the concentration ranging from 1.0 × 102 to 1.0 × 107 CFU mL-1. The detection limit was defined as 4.3 CFU mL-1, which performance is superior to some commercial ELISA kits. Additionally, this system detected the S. aureus in food samples and showed an acceptable recovery. As a cost-effective and sensitive platform, this proposed assay was enable to fulfill the requirement of a quick and effective detection of S. aureus.


Assuntos
Técnicas Biossensoriais , Infecções Estafilocócicas , Animais , Suínos , Antibacterianos , Staphylococcus aureus/química , Técnicas Biossensoriais/métodos , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Vancomicina/química , Imunoensaio , Limite de Detecção , Peroxidase do Rábano Silvestre/química
14.
Comput Biol Med ; 159: 106965, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119552

RESUMO

Vancomycin resistance in enterococci mainly arises due to alteration in terminal peptidoglycan dipeptide. A comprehensive structural analysis for substrate specificity of dipeptide modifying d-Alanine: d-Serine ligase (Ddls) is essential to screen its inhibitors for combating vancomycin resistance. In this study modeled 3D structure of EgDdls from E. gallinarum was used for structure based virtual screening (SBVS) of oxadiazole derivatives. Initially, fifteen oxadiazole derivatives were identified as inhibitors at the active site of EgDdls from PubChem database. Further, four EgDdls inhibitors were evaluated using pharmacokinetic profile and molecular docking. The results of molecular docking showed that oxadiazole inhibitors could bind preferentially at ATP binding pocket with the lowest binding energy. Further, molecular dynamics simulation results showed stable behavior of EgDdls in complex with screened inhibitors. The residues Phe172, Lys174, Glu217, Phe292, and Asn302 of EgDdls were mainly involved in interactions with screened inhibitors. Furthermore, MM-PBSA calculation showed electrostatic and van der Waals interactions mainly contribute to overall binding energy. The PCA analysis showed motion of central domain and omega loop of EgDdls. This is involved in the formation of native dipeptide and stabilized after binding of 2-(1-(Ethylsulfonyl) piperidin-4-yl)-5-(furan-2-yl)-1,3,4-oxadiazole, which could be reason for the inhibition of EgDdls. Hence, in this study we have screened inhibitors of EgDdls which could be useful to alleviate the vancomycin resistance problem in enterococci, involved in hospital-acquired infections, especially urinary tract infections (UTI).


Assuntos
Enterococcus , Vancomicina , Enterococcus/metabolismo , Vancomicina/farmacologia , Vancomicina/química , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Resistência a Vancomicina , Dipeptídeos/metabolismo , Ligases/metabolismo , Proteínas de Bactérias/química
15.
ACS Biomater Sci Eng ; 9(4): 1976-1990, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36881921

RESUMO

In this study, we developed a poly(ß-amino ester) (PBAE) hydrogel for the double release of vancomycin (VAN) and total flavonoids of Rhizoma Drynariae (TFRD). VAN was covalently bonded to PBAE polymer chains and was released to enhance the antimicrobial effect first. TFRD chitosan (CS) microspheres were physically dispersed in the scaffold, TFRD was released from the microspheres, and osteogenesis was induced subsequently. The scaffold had good porosity (90.12 ± 3.27%), and the cumulative release rate of the two drugs in PBS (pH 7.4) solution exceeded 80%. In vitro antimicrobial assays demonstrated the antibacterial properties of the scaffold against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Besides these, cell viability assays indicated that the scaffold had good biocompatibility. Moreover, alkaline phosphatase and matrix mineralization were expressed more than in the control group. Overall, cell experiments confirmed that the scaffolds have enhanced osteogenic differentiation capabilities. In conclusion, the dual-drug-loaded scaffold with antibacterial and bone regeneration effects is promising in the field of bone repair.


Assuntos
Anti-Infecciosos , Osteogênese , Staphylococcus aureus , Hidrogéis/farmacologia , Escherichia coli , Tecidos Suporte/química , Antibacterianos/farmacologia , Antibacterianos/química , Vancomicina/farmacologia , Vancomicina/química , Anti-Infecciosos/farmacologia
16.
Colloids Surf B Biointerfaces ; 224: 113207, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36801745

RESUMO

A new type of vancomycin (Van)-modified carbon nanodots (CNDs@Van) with pH-responsive surface charge switchable activity was successfully developed by covalently cross-linking Van on the surface of carbon nanodots (CNDs). Polymeric Van was formed on the surface of CNDs by covalent modification, which enhanced the targeted binding of CNDs@Van to vancomycin-resistant enterococci (VRE) biofilms and effectively reduced the carboxyl groups on the surface of CNDs to achieve pH-responsive surface charge switching. Most importantly, CNDs@Van was free at pH 7.4, but assembled at pH 5.5 owing to surface charge switching from negative to zero, resulting in remarkably enhanced near-infrared (NIR) absorption and photothermal properties. CNDs@Van exhibited good biocompatibility, low cytotoxicity, and weak hemolytic effects under physiological conditions (pH 7.4). Regarding targeted binding to VRE bacteria, CNDs@Van self-assembled in a weakly acidic environment (pH 5.5) generated by VRE biofilms, giving enhanced photokilling effects in in vitro and in vivo assays. Therefore, potentially, CNDs@Van can be used as a novel antimicrobial agent against VRE bacterial infections and their biofilms.


Assuntos
Infecções Bacterianas , Enterococos Resistentes à Vancomicina , Humanos , Vancomicina/farmacologia , Vancomicina/química , Carbono/farmacologia , Carbono/química , Infecções Bacterianas/microbiologia , Fenômenos Químicos , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química
17.
Anal Methods ; 14(40): 3999-4007, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36193655

RESUMO

Polymer microspheres have been widely used as a stationary phase for liquid chromatography. In this work, we prepared and synthesized polystyrene-methyl methacrylate (PS-PMMA) microspheres, modified them, characterized the microspheres to have good chromatographic properties, and then used them as a high-performance liquid chromatography (HPLC) stationary phase to explore their applications. First, the PS-PMMA microspheres were hydrolyzed, and the separation of benzene homologues/alkaloids was explored. Then, on the basis of hydrolysis, diazo resin (DR) was used as a coupling agent to further modify the surface of the microspheres with amphoteric glycopeptide vancomycin. The modified microspheres were used as a HPLC stationary phase to explore the application of the stationary phase in the separation of chiral drugs. This work is important to broaden the application of functional chiral columns for antibiotics and to expand the application of PS-PMMA microspheres in HPLC.


Assuntos
Alcaloides , Poliestirenos , Cromatografia Líquida de Alta Pressão/métodos , Microesferas , Poliestirenos/química , Polimetil Metacrilato , Vancomicina/química , Metilmetacrilato , Benzeno , Antibacterianos , Metacrilatos
18.
Acta Biomater ; 154: 650-666, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306986

RESUMO

Titanium (Ti) implant-associated infections are a challenge in orthopedic surgery, for which a series of antibacterial coatings have been designed and fabricated to reduce the risk of bacterial contamination. Herein, we created a degradable three-layer sandwich-type coating to achieve long-term antibacterial effects while simultaneously reconstructing the local immune microenvironment. The vancomycin (Van)-loaded vaterite coating constitutes the outer and inner layers, whereas Interleukin-12 (IL-12)-containing liposomes embedded in sodium alginate constitutes the middle layer. Van, released from the vaterite, demonstrated a favorable and rapid bactericidal ability against the representative methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. The released IL-12 exhibited the desired immune reconstitution abilities, actively facilitating defenses against subsequent bacterial invasions. Furthermore, the biocompatibility and cell-binding feature of the multifunctional coating was beneficial for achieving solid interface intergradation. Overall, the benefits of the three-layer sandwich-type coating, including the convenient fabrication process, efficient antimicrobial activity, fast immune remodeling property, fine cell-binding feature, and biodegradability, highlight its promising translational potential in preventing implant infection. STATEMENT OF SIGNIFICANCE: To prevent titanium implant infections, researchers have designed various antibacterial coatings. However, most of these coatings focused only on killing the invading bacteria over a limited postoperative period. However, the local immune microenvironment is compromised during surgery. Local immune deflection impedes the ability of the local immune defenses to clear bacteria and limits immune memory building from active defense against long-term subsequent bacterial invasions. Furthermore, these coatings are usually nondegradable and differ substantially from bone components, thereby impairing the integration of the coating and bone interface and generating concerns about implant stability and bacterial contamination. In this work, we synthesized a degradable coating that provides sustained antibacterial activity, promotes immune reconstitution, and simultaneously achieves solid bone integration.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Titânio , Titânio/farmacologia , Titânio/química , Staphylococcus aureus , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Antibacterianos/química , Vancomicina/química , Interleucina-12
19.
Chem Phys Lipids ; 249: 105241, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152880

RESUMO

The rampant antimicrobial resistance crisis calls for efficient and targeted drug delivery of antibiotics at the infectious site. Hence, this study aimed to synthesize a pH-responsive dimethylglycine surface-modified branched lipid (DMGSAD-lipid). The structure of the synthesized lipid was fully confirmed. The lipid polymer hybrid nanoparticles (LPHNPs) were formulated using the solvent evaporation method and characterised. Two LPHNPs (VCM_HS15_LPHNPs and VCM_RH40_LPHNPs) were formulated and characterised for size, polydispersity index (PDI), and zeta potential (ZP). Atomistic molecular dynamics simulations revealed that both the systems self-assembled to form energetically stable aggregates. The ZP of RH40_VCM_LPHNPs changed from 0.55 ± 0.14-9.44 ± 0.33 Vm, whereas for SH15_VCM_LPHNPs, ZP changed from - 1.55 ± 0.184 Vm to 9.83 ± 0.52 Vm at pH 7.4 and 6.0, respectively. The encapsulation efficiencies of VCM were above 40% while the drug release was faster at acidic pH when compared to pH 7.4. The antibacterial activity of LPHNPs against MRSA was eight-fold better in MICs at pH 6.0, compared to 7.4, when compared to bare VCM-treated specimens. The study confirms that pH-responsive LPHNPs have the potential for enhancing the treatment of bacterial infections and other diseases characterised by acidic conditions at the target site.


Assuntos
Antibacterianos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/química , Vancomicina/química , Nanopartículas/química , Polímeros , Lipídeos/química , Concentração de Íons de Hidrogênio
20.
J Nanobiotechnology ; 20(1): 400, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064405

RESUMO

BACKGROUND: Sepsis is caused mainly by infection in the blood with a broad range of bacterial species. It can be diagnosed by molecular diagnostics once compounds in the blood that interfere with molecular diagnostics are removed. However, this removal relies on ultracentrifugation. Immunomagnetic separation (IMS), which typically uses antibody-conjugated silica-coated magnetic nanoparticles (Ab-SiO2-MNPs), has been widely applied to isolate specific pathogens in various types of samples, such as food and environmental samples. However, its direct use in blood samples containing bacteria is limited due to the aggregation of SiO2-MNPs in the blood and inability to isolate multiple species of bacteria causing sepsis. RESULTS: In this study, we report the synthesis of vancomycin-conjugated polydopamine-coated (van-PDA-MNPs) enabling preconcentration of multiple bacterial species from blood without aggregation. The presence of PDA and van on MNPs was verified using transmission electron microscopy, X-ray photoelectron spectroscopy, and energy disruptive spectroscopy. Unlike van-SiO2-MNPs, van-PDA-MNPs did not aggregate in the blood. Van-PDA-MNPs were able to preconcentrate several species of Gram-positive bacteria in the blood, lowering the limit of detection (LOD) to 10 colony forming units/mL by polymerase chain reaction (PCR) and quantitative PCR (qPCR). This is 10 times more sensitive than the LOD obtained by PCR and qPCR using van-SiO2-MNPs. CONCLUSION: These results suggest that PDA-MNPs can avoid aggregation in blood and be conjugated with receptors, thereby improving the sensitivity of molecular diagnostics of bacteria in blood samples.


Assuntos
Nanopartículas de Magnetita , Sepse , Bactérias , Bactérias Gram-Positivas , Humanos , Indóis , Nanopartículas de Magnetita/química , Patologia Molecular , Polímeros , Dióxido de Silício , Vancomicina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...